亚洲色吧

Koh Enshan Dax

KOH Enshan Dax

Adjunct Assistant Professor

Quantum Computation

RESEARCH AREAS
Physics
Mathematics

Biography

Dr Koh Enshan Dax is an Adjunct Assistant Professor at 亚洲色吧 and a Senior Scientist at the (IHPC) under the (A*STAR), Singapore. He is also an Investigator at the and an Editor at the journal .

Previously, Dr Koh was a Z-Fellowship Postdoctoral Researcher at Zapata Computing (now ) in Boston, MA, USA. Dr Koh was a recipient of A*STAR’s National Science Scholarship (NSS BS-PhD) and the A*STAR Science and Engineering Research Council (SERC) Central Research Fund (CRF) Award for Use-Inspired Basic Research.

Dr Koh received the B.S. degree in Mathematics and Physics from (Stanford, CA, USA); the M.Sc. degree in Physics from the (Waterloo, ON, Canada) in conjunction with the certificate from the (Waterloo, ON, Canada); and the Ph.D. degree in Mathematics from the (Cambridge, MA, USA).

Education
  • Ph.D., Mathematics,, USA (2019)
  • M.Sc., Physics,,and, Canada (2013)
  • B.S., Mathematics and Physics 鈥double major,, USA (2011)
Awards
  • Awarded, IOP Publishing (2023).
  • Central Research Fund Award, A*STAR Science and Engineering Research Council (2022).
  • National Science Scholarship (PhD), A*STAR (2013).
  • Chairman鈥檚 Honours List, A*STAR (2011).
  • National Science Scholarship (BS), A*STAR (2006).
Research Interests

Quantum computation, quantum algorithms, quantum complexity theory, classical simulation of quantum computation, and quantum foundations

Selected Publications
  • Fong Yew Leong, Dax Enshan Koh, Jian Feng Kong, Siong Thye Goh, Jun Yong Khoo, Wei-Bin Ewe, Hongying Li, Jayne Thompson, and Dario Poletti, 鈥淪olving fractional differential equations on a quantum computer: A variational approach.鈥(2024).
  • Kaifeng Bu, Roy J. Garcia, Arthur Jaffe, Dax Enshan Koh, and Lu Li, 鈥淐omplexity of Quantum Circuits via Sensitivity, Magic, and Coherence.鈥(2024).
  • Bujiao Wu and Dax Enshan Koh, 鈥淓rror-mitigated fermionic classical shadows on noisy quantum devices.鈥(2024).
  • V. Vijendran, Aritra Das, Dax Enshan Koh, Syed M. Assad, and Ping Koy Lam, 鈥淎n expressive ansatz for low-depth quantum approximate optimisation.鈥(2024).
  • Kaifeng Bu, Dax Enshan Koh, Roy J. Garcia, and Arthur Jaffe, 鈥淐lassical shadows with Pauli-invariant unitary ensembles.鈥(2024).
  • Fong Yew Leong, Dax Enshan Koh, Wei-Bin Ewe, and Jian Feng Kong, 鈥淰ariational quantum simulation of partial differential equations: applications in colloidal transport.鈥(2023).
  • Kaifeng Bu, Dax Enshan Koh, Lu Li, Qingxian Luo, and Yaobo Zhang, 鈥淓ffects of quantum resources and noise on the statistical complexity of quantum circuits.鈥(2023).
  • Amara Katabarwa, Sukin Sim, Dax Enshan Koh, and Pierre-Luc Dallaire-Demers, 鈥淐onnecting geometry and performance of two-qubit parameterized quantum circuits.鈥(2022).
  • Dax Enshan Koh and Sabee Grewal, 鈥淐lassical Shadows with Noise.鈥(2022).
  • Fong Yew Leong, Wei-Bin Ewe, and Dax Enshan Koh, 鈥淰ariational quantum evolution equation solver.鈥(2022).
  • Kaifeng Bu, Dax Enshan Koh, Lu Li, Qingxian Luo, and Yaobo Zhang, 鈥淪tatistical complexity of quantum circuits.鈥(2022).
  • Dax Enshan Koh, Guoming Wang, Peter D. Johnson, and Yudong Cao, 鈥淔oundations for Bayesian inference with engineered likelihood functions for robust amplitude estimation.鈥(2022).
  • Wei-Bin Ewe, Dax Enshan Koh, Siong Thye Goh, Hong-Son Chu, and Ching Eng Png, 鈥淰ariational Quantum-Based Simulation of Waveguide Modes.鈥(2022).
  • Kaifeng Bu and Dax Enshan Koh, 鈥淐lassical Simulation of Quantum Circuits by Half Gauss Sums.鈥(2022).
  • Guoming Wang, Dax Enshan Koh, Peter D. Johnson, and Yudong Cao, 鈥淢inimizing Estimation Runtime on Noisy Quantum Computers.鈥(2021).
  • Alexander M. Dalzell, Aram W. Harrow, Dax Enshan Koh, and Rolando L. La Placa, 鈥淗ow many qubits are needed for quantum computational supremacy?鈥(2020).
  • Jacob D. Biamonte, Mauro E. S. Morales, and Dax Enshan Koh, 鈥淓ntanglement scaling in quantum advantage benchmarks.鈥(2020).
  • Kaifeng Bu and Dax Enshan Koh, 鈥淓fficient Classical Simulation of Clifford Circuits with Nonstabilizer Input States.鈥(2019).
  • Adam Bouland, Joseph F. Fitzsimons, and Dax Enshan Koh, 鈥淐omplexity Classification of Conjugated Clifford Circuits.鈥(2018).
  • Dax Enshan Koh, Murphy Yuezhen Niu, and Theodore J. Yoder, 鈥淨uantum simulation from the bottom up: the case of rebits.鈥(2018).
  • Dax Enshan Koh, Mark D. Penney, and Robert W. Spekkens, 鈥淐omputing quopit Clifford circuit amplitudes by the sum-over-paths technique.鈥(2017).
  • Mark D. Penney, Dax Enshan Koh, and Robert W. Spekkens, 鈥淨uantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?鈥(2017).
  • Dax Enshan Koh, 鈥淔urther extensions of Clifford circuits and their classical simulation complexities.鈥(2017).
  • Zi-Wen Liu, Christopher Perry, Yechao Zhu, Dax Enshan Koh, and Scott Aaronson, 鈥淒oubly infinite separation of quantum information and communication.鈥(2016).
  • Dax Enshan Koh, Michael J. W. Hall, Setiawan, James E. Pope, Chiara Marletto, Alastair Kay, Valerio Scarani, and Artur Ekert, 鈥淓ffects of Reduced Measurement Independence on Bell-Based Randomness Expansion.鈥(2012).
  • M. J. Ma, M. B. A. Jalil, S. G. Tan, and D. E. Koh, 鈥淪pin-flip assisted tunneling through quantum dot based magnetic tunnel junctions.鈥(2011).
  • Jie Guo, Seng Ghee Tan, Mansoor Bin Abdul Jalil, Dax Enshan Koh, Guchang Han, and Hao Meng, 鈥淪elf-consistent treatment of spin and magnetization dynamic effect in spin transfer switching.鈥(2011).
  • Seng Ghee Tan, Mansoor Bin Abdul Jalil, Dax Enshan Koh, and Hwee Kuan Lee, 鈥淧seudospin-orbital coupling for pseudospintronic device in graphene.鈥(2010).